Proposed Control Measure to Reduce Emissions from Small Off-Road Engines (SORE)

Mobile Source Control Division
Planning and Technical Support
Monitoring and Laboratory Division
California Air Resources Board

November 13, 2002

Major Components of the Evaporative Portion of the Proposed SORE Control Measure

- Sets diurnal evaporative emission standards for equipment with engine displacements greater 65 cc
- Sets a fuel tank permeation standard applicable to all SORE categories
- Requires manufactures to label and certify equipment sold in California

Regulatory Approach

- Use available technology to reduce emissions
- Set attainable and cost effective emission standards
- Limit burden on industry by:
 - Providing either a performance or a design-based certification option
 - Allowing a phased-in implementation schedule

Permeation Technology

- Multi layered co-extruded (Coex) plastic fuel tanks
- HDPE fuel tanks made with Selar® RB-425
- Post fabrication fluorination of HDPE fuel tanks
- Post fabrication sulfonation of HDPE fuel tanks
- Metal fuel tanks
- Fuel connectors made from acetal copolymers and other low permeation thermoplastics
- Fluoroelastomer seals, diaphragms and gaskets

Barrier Treatment Permeation Comparison

Selar® RB-425 vs. Fluorination and Co-ex with EVOH

Permeability of fuel tanks containing with 7% Selar® and 30% regrind using a 65 - 105 -65° F diurnal profile.

Average values for Fluorination (F2) and co-ex with EVOH.

Polymer Permeation Comparison

- •Polyphenylene Sulfide (PPS), Acetal Copolymer (POM)
- •Polybutylene Terephthalate (PBT)

Nylon Permeation Comparison

Dupont Zytel® Nylon Products

Evaporative Emission Control Technology

- Passively actuated valves that control vapors
- Carbon canisters systems that absorb tank vapors
- Pleated carbon air filters capable of absorbing carburetor vapors
- Hybrid systems that vent tank vapors to a canister above a fixed pressure
- Collapsible fuel bladders

Venting Control Technology Demonstration

- Tested three pairs of walk-behind lawn mowers
- ARB built and tested prototype controls with the following technology:
 - Engine-brake actuated valves that isolate tank vapors during storage
 - Fluorinated HDPE fuel tanks
 - Low permeation fuel lines

Modified Snapper Mower

Modified Honda Mower

Venting Technology Demonstration Data

Lawn Mower Evaporative Emission Reduction Data (24-Hour Diurnal Fuel Comparison)

Canister Control Technology Modeling

- Calculated emissions from a 670 cc canister with a working capacity of 36 grams
- Modeled canister performance as if it were attached to a 5 gallon fuel tank filled to 50% capacity
- Assumed a test fuel with a RVP of 7 PSI
- Simulated canister performance over 50 diurnal temperature profiles (65 - 105 - 65°F)
- Worst case long term efficiency determined to be 47%

Canister Modeling Data

Estimated Canister Efficiency

Proposed Evaporative Standards

- 1.0 gram HC/day diurnal standard for equipment with engines > 65 cc < 225 cc
- 2.0 gram HC/day diurnal standard for equipment with engines ≥ 225 cc
- 1.0 gram/meter²/day fuel tank permeation standard for all SORE equipment fuel tanks

Test Procedures

- Staff is reviewing recently adopted U.S. EPA permeation and diurnal emissions test procedures
- TP-901, "Test Procedure for Determining Fuel Tank Permeation Rates Using Gravimetric Analysis":
 - currently considering a gravimetric test procedure
- TP-902, "Test Procedure for Determining Diurnal Evaporative Emissions from Small Off-Road Engines"
 - is intended for performance-based certification
- Requesting comment on alternative test procedures

In-Use Durability Test

- Staff is developing a test procedure that duplicates the cycles of use of systems/components
- Test procedure currently assumes 7 year useful life
- Accelerated aging would simulate usage and consider hour of operation
- Staff is currently seeking comment on durability test procedures

Certification Options

- Certify equipment to performance standards (CP-901 Part I)
- Certify equipment to design standards (CP-901 Part II)
- Certify control components/systems (CP-901 Part III)
 - Fuel tank permeation (CP-901 Appendix A)
 - Venting control (CP-901 Appendix B)
 - Fuel hose permeation (CP-901 Appendix C)

Performance-Based Certification Overview

Performance-Based Certification Requirements

- Group equipment models into evaporative families
- Measure emissions for the highest emitting equipment within the evaporative family
- Submit an evaporative emissions label for ARB approval
- Submit a certification application that includes:
 - Performance-based certification summary sheet
 - Certification Database Form

Performance-Based Testing Requirements

- Performance-based certification requires gravimetric testing (all SORE tanks) and SHED testing for engines
 > 65 cc
 - Select a model in the evaporative family that is expected to exhibit worst-case emissions
 - Conduct emission testing per applicable test procedure TP-901 or TP-902
 - Results must not exceed applicable standard

Design-Based Certification Overview

Design-Based Certification Requirements

- Select approved emission control equipment
- Group equipment into evaporative families
- Submit an evaporative emissions label for ARB approval
- Submit a letter of compliance that includes:
 - Design-based certification summary sheet
 - Certification database form

Design-Based Certification Summary Sheet Requirements

- Certification Summary must specifically reference:
 - Executive Order number from CP-910 Appendix A that approves the fuel tank permeation control
 - Executive Order number from CP-901 Appendix B that approves the system used to control vapors generated by the fuel tank
 - Executive Order number from CP-901 Appendix C that approves the low permeation fuel line

Design-Based Equipment Requirements

- Control equipment must include:
 - Fuel tank permeation control
 - System to control vapors generated by the fuel tank
 - Self-locking, tethered fuel cap
 - Low permeation fuel line that meets SAE J30 R11, J30 R12A, or J2260 category one specifications

Control System Certification Overview

Control System Certification Process

- Submit a certification application containing:
 - cover letter with test data
 - engineering description of control system
 - durability demonstration
 - statement of materials compatibility with fuels
 - any maintenance requirements
 - warranty
- System will undergo an engineering evaluation that may include:
 - evaluation of system concept
 - bench testing of components
 - failure mode testing

Next Steps

- Incorporate stakeholder comment on proposed regulatory language and certification procedures
- Post and take comment on test procedures TP-901 and TP-902
- Prepare staff report

Contacts and Additional Information

Evaporative Emissions Information

James Watson	(916) 327-1282	jwatson@arb.ca.gov
Dean Bloudoff	(916) 323-1169	dbloudof@arb.ca.gov
Fax	(916) 322-2444	

Emissions Inventory Information

Walter Wong	(626) 450-6184	wwong@arb.ca.gov
Archana Agrawal	(626) 450-6136	aagrawal@arb.ca.gov
Mark Carlock	(626) 575-6608	mcarlock@arb.ca.gov

SORE Web Page URL

http://www.arb.ca.gov/msprog/offroad/sore/sore.htm